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learned how to optimize their hardware to perform well on the standard benchmarks. An application
that behaves substantially differently from a benchmark test may not show the same level of perfor-
mance as advertised by the manufacturer.

The microprocessor’s memory interface is a critical contributor to its performance. Whether a
small 8-bit microprocessor or a 64-bit behemoth, the speed with which instructions can be fetched
and data can be loaded and stored affects the execution time of an application. The necessary band-
width of a memory interface is relative and is proportional to the sum of the instruction and data
bandwidths of an application. From the instruction perspective, it is clear that the microprocessor
needs to keep itself busy with a steady stream of instructions. Data bandwidth, however, is very
much a function of the application. Some applications may perform frequent load/store operations,
whereas others may operate more on data retained within the microprocessor’s register set. To the
extent that load/store operations detract from the microprocessor’s ability to fetch and execute new
instructions, they will reduce overall throughput.

Clock frequency becomes a defining attribute of a microprocessor once its instruction set, exe-
cution capabilities, and memory interface are understood from a performance perspective. Without
these supporting attributes, clock speed alone does not define the capabilities of a microprocessor.
A 500-MHz single-issue, or nonsuperscalar, microprocessor could be easily outperformed by a
200-MHz four-issue superscalar design. Additionally, there may be multiple relevant clocks to con-
sider in a complex microprocessor. Microprocessors whose internal processing cores are decoupled
from the external memory bus by an integrated cache are often specified with at least two clocks:
the core clock and the bus interface clock. It is necessary to understand the effect of both clocks on
the processing core’s throughput. A fast core can be potentially starved for instructions and data by
a slow interface. Once a microprocessor’s resources have been quantified, clock frequency be-
comes a multiplier to determine how many useful operations per second can be expected. Metrics
such as instructions per second (IPS) or floating-point operations per second (FLOPS) are specified
by multiplying the average number of instructions executed per cycle by how many cycles occur
each second. Whereas high-end microprocessors were once measured in MIPS and MFLOPS,
GIPS and GFLOPS performance levels are now attainable.

As already mentioned, memory bandwidth and, consequently, memory architecture hold key
roles in determining overall system performance. Memory system architecture encompasses all
memory external to the microprocessor’s core, including any integrated caches that it may contain.
When dealing with an older-style microprocessor with a memory interface that does not stress cur-
rent memory technologies, memory architecture may not be subject to much variability and may not
be a bottleneck at all. It is not hard to find flash, EPROM, and SRAM devices today with access
times of 50 ns and under. A moderately sized memory array constructed from these components
could provide an embedded microprocessor with full-speed random access as long as the memory
transaction rate is 20 MHz or less. Many 8-, 16-, and even some 32-bit embedded microprocessors
can fit comfortably within this performance window. As such, computers based on these devices can
have simple memory architectures without suffering performance degradation.

Memory architecture starts to get more complicated when higher levels of performance are de-
sired. Once the microprocessor’s program and data fetch latency becomes faster than main mem-
ory’s random access latency, caching and bandwidth improvement techniques become critical to
sustaining system throughput. Random access latency is the main concern. A large memory array
can be made to deliver adequate bandwidth given a sufficient width. As a result of the limited operat-
ing frequency of SDRAM devices, high-end workstation computers have been known to connect
multiple memory chips in parallel to create 256-bit and even 512-bit wide interfaces. Using 512 Mb
DDR SDRAMs, each organized as 32M X 16 and running at 167 MHz, 16 devices in parallel would
yield a 1-GB memory array with a burst bandwidth of 167 MHz X 2 words/hertz X 256 bits/word =
85.5 Gbps! This is a lot of bandwidth, but relative to a microprocessor core that operates at 1 GHz or
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more with a 32- or 64-bit data path, such a seemingly powerful memory array may just barely be
able to keep up.

While bandwidth can be increased by widening the interface, random access latency does not go
away. Therefore, there is more to a memory array than its raw size. The bandwidth of the array,
which is the product of its interface frequency and width, and its latency are important metrics in un-
derstanding the impact of cache misses, especially when dealing with applications that exhibit poor
locality.

Caching reduces the negative effect of high random access latencies on a microprocessor’s
throughput. However, caches and wide arrays cannot completely balance the inequality between the
bandwidth and latency that the microprocessor demands and that which is provided by SDRAM tech-
nology. Cache size, type, and latency and main memory bandwidth are therefore important metrics
that contribute to overall system performance. An application’s memory characteristics determine
how costly a memory architecture is necessary to maintain adequate performance. Applications that
operate on smaller sets of data with higher degrees of locality will be less reliant on a large cache and
fast memory array, because they will have fewer cache misses. Those applications with opposite
memory characteristics will increase the memory architecture’s effect on the computer’s overall per-
formance. In fact, by the nature of the application being run, caching effects can become more signif-
icant than the microprocessor’s core clock frequency. In some situations, a 500-MHz microprocessor
with a 2-MB cache can outperform a 1-GHz microprocessor with a 256-kB cache. It is important to
understand these considerations because money may be better spent on either a faster microprocessor
or a larger cache according to the needs of the intended applications.

1/0 performance affects system throughput in two ways: the latency of executing transactions and
the degree to which such execution blocks the microprocessor from performing other work. In a
computer in which the microprocessor operates with a substantially higher bandwidth than individ-
ual I/O interfaces, it is desirable to decouple the microprocessor from the slower interface as much
as possible. Most I/O controllers provide a natural degree of decoupling. A typical UART, for exam-
ple, absorbs one or more bytes in rapid succession from a microprocessor and then transmits them at
a slower serial rate. Likewise, the UART assembles one or more whole incoming bytes that the mi-
croprocessor can read at an instantaneous bandwidth much higher than the serial rate. Network and
disk adapters often contain buffers of several kilobytes that can be rapidly filled or drained by the
microprocessor. The microprocessor can then continue with program execution while the adapter
logic handles the data at whatever lower bandwidth is inherent to the physical interface.

Inherent decoupling provided by an I/O controller is sufficient for many applications. When deal-
ing with very I/O-intensive applications, such as a large server, multiple I/O controllers may interact
with each other and memory simultaneously in a multimaster bus configuration. In such a context,
the microprocessor sets up block data transfers by programming multiple I/O and DMA controllers
and then resumes work processing other tasks. Each I/0 and DMA controller is a potential bus mas-
ter that can arbitrate for access to the memory system and the I/O bus (if there is a separate I/O bus).
As the number of simultaneous bus masters increases, contention can develop, which may cause per-
formance degradation resulting from excessive waiting time by each potential bus master. This con-
tention can be reduced by modifying the I/O bus architecture. A first step is to decouple the I/O bus
from the memory bus into one or more segments, enabling data transfers within a given I/O segment
to proceed without conflicting with a memory transfer or one contained within other I/O segments.
PCI is an example of such a solution. At a more advanced level, the I/O system can be turned into a
switched network in which individual I/O controllers or small segments of I/O controllers are con-
nected to a dedicated port on an I/O switch that enables each port to communicate with any other
port simultaneously insofar as multiple ports do not conflict for access to the same port. This is a
fairly expensive solution that is implemented in high-end servers for which I/O performance is a key
contributor to overall system throughput.





